Enhancement of angiogenic effectors through hypoxia-inducible factor in preterm primate lung in vivo.

نویسندگان

  • Tiina M Asikainen
  • Nahid S Waleh
  • Barbara K Schneider
  • Ronald I Clyman
  • Carl W White
چکیده

Development of lung microvasculature is critical for distal airway formation. Both processes are arrested in the lungs of preterm newborns with bronchopulmonary dysplasia (BPD), a chronic form of lung disease. We hypothesized that activation of hypoxia-inducible factors (HIFs) augments lung vascular development. Pulmonary angiogenic factors were assessed by quantitative real-time PCR, Western blot, and immunohistochemistry in preterm baboons (125 days+14 days pro re nata O2 model) treated for 14 days with intravenous FG-4095, an inhibitor of prolyl hydroxylase domain-containing proteins (PHDs) that initiates HIF degradation. HIF-1alpha, but not HIF-2alpha, mRNA and protein were increased (8- and 3-fold, respectively) in FG-4095-treated baboons relative to untreated controls. Expression of PHD-1, -2, and -3 was unchanged. Of note, mRNA and/or protein for platelet-endothelial cell adhesion molecule 1 (PECAM-1) and vascular endothelial growth factor (VEGF) were increased by FG-4095. Moreover, PECAM-1-expressing capillary endothelial cells detected by immunohistochemistry were augmented in FG-4095-treated baboons to levels comparable to those in fetal age-matched controls. Alveolar septal cell expression of Ki67, a proliferative marker, and VEGF were similar in untreated controls and FG-4095-treated neonates. These results indicate that HIF stimulation by PHD inhibition enhances lung angiogenesis in the primate model of BPD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of hypoxia-inducible factors in hyperoxia through prolyl 4-hydroxylase blockade in cells and explants of primate lung.

Preterm neonates with respiratory distress syndrome (RDS) often develop a chronic form of lung disease called bronchopulmonary dysplasia (BPD), characterized by decreased alveolar and vascular development. Ventilator treatment with supraphysiological O2 concentrations (hyperoxia) contribute to the development of BPD. Hyperoxia down-regulates and hypoxia up-regulates many angiogenic factors in t...

متن کامل

Improved lung growth and function through hypoxia-inducible factor in primate chronic lung disease of prematurity.

Bronchopulmonary dysplasia (BPD), a chronic lung disease affecting preterm neonates, is associated with significant childhood and adult health problems. Histopathologic features of BPD include impaired vascular and distal airway development. We previously showed that activation of hypoxia-inducible factors (HIFs) by inhibition of prolyl hydroxylase domain-containing proteins (PHDs) is feasible ...

متن کامل

Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model

Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...

متن کامل

RAPID COMMUNICATION Induction of Vascular Endothelial Growth Factor by Hypoxia Is Modulated by a Phosphatidylinositol 3-Kinase/Akt Signaling Pathway in Ha-ras-Transformed Cells Through a Hypoxia Inducible Factor-1 Transcriptional Element

Tumor angiogenesis, the development of new blood vessels, genes does not inhibit VEGF induction under low oxygen is a highly regulated process that is controlled genetically conditions. In contrast to the c-Raf-1/MAP kinase pathway, by alterations in oncogene and tumor suppressor gene exhypoxia increases phosphatidylinositol 3-kinase (PI 3-kinase) pression and physiologically by the tumor micro...

متن کامل

Hypoxia-inducible factors HIF-1 and HIF-2 are decreased in an experimental model of severe respiratory distress syndrome in preterm lambs

Grover TR, Asikainen TM, Kinsella JP, Abman SH, White CW. Hypoxia-inducible factors HIF-1 and HIF-2 are decreased in an experimental model of severe respiratory distress syndrome in preterm lambs. Am J Physiol Lung Cell Mol Physiol 292: L1345–L1351, 2007. First published February 16, 2007; doi:10.1152/ajplung.00372.2006.— Respiratory distress syndrome (RDS) secondary to preterm birth and surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006